2013年10月31日木曜日

問題をやさしくする数学(21)論理の問題の反例範囲を分割する

http://schoolhmath.blogspot.jp/2013/10/blog-post_29.html
http://schoolhmath.blogspot.jp/2013/11/blog-post.html
【問】
実数a,bに関する条件p,qを次のように定める。
p: (a+b)+(a-2b)<5
q: (a+b)<1 または (a-2b)<4
次の①~④のうち、命題「q⇒p」に対する反例になっているのはどれか。
(反例候補)
①a=0,b=0
②a=1,b=0
③a=0,b=1
④a=1,b=1

【解答】
命題「q⇒p」に対する反例は、
q及び(pで無い)が成り立つ場合である。

(1)命題pとqをパラメータaとbであらわす式が複雑なので、命題の式の方をX、Yとおいて命題を見やすくする
(2)命題qが複雑なので、命題rとsの2つの命題に分けて、命題qを(rまたはs)に変換ずる。
r: (a+b)<1
s: (a-2b)<4

命題「q⇒p」に対する反例は、
(rまたはs)及び(pで無い)が成り立つ場合である。
この命題の範囲は、以下の式のように変換する。

(rまたはs)については、
(rまたは(s及び(rで無い)))
として、重なりが無い反例範囲に分ける。
そして、結局、反例範囲を、AとBとの2つに分ける。

(問題を簡単にする工夫)
このAとBとについて、別々に反例をさがす。
このAとBの反例範囲には、範囲の重なりが無いので反例探しに無駄が無い。
AとBとを別々に探すと、反例範囲の図は正確に書かないでも良く、図が簡単に手間がかからないようになる。

先ず、反例範囲Aに反例候補①②③④が入るかを調べる。
反例範囲を以下の図の斜線であらわす。

③の、a=0,b=1の場合は、
X=1なので、rを満足しない。よって反例では無い。

次に、反例範囲Bに反例候補①②③④が入るかを調べる。

③の、a=0,b=1の場合は、
Y=-2なので、sを満足しない。よって反例では無い。
④の、a=1,b=1の場合は、
X=2,Y=-1なので、sを満足する。
また、円周上の点なので、(pで無い)も満足する。
よって、④が反例である。
(解答おわり)


リンク:
高校数学の目次

2013年10月29日火曜日

問題をやさしくする数学(20)論理の問題では余分な部分を無くす

http://schoolhmath.blogspot.jp/2013/10/blog-post_28.html
http://schoolhmath.blogspot.jp/2013/10/blog-post_31.html
【問】三角形に関する条件p,q,rを次のように定める。
p: 3つの内角がすべて異なる。
q: 直角三角形でない
r: 45°の内角は一つもない
命題「(pまたはq)⇒r」に対する反例になっている三角形を考えよ。

【解答】
命題「(pまたはq)⇒r」に対する反例は、
(pまたはq)及び(rでない)
です。

これは、
(p及び(rでない))または(q及び(rでない))
と等しい。


pのうち、qである場合はqに含まれていて余分なので、
pについては、p及び(qでない)場合のみを考えて、命題を整理する。
そうして整理した反例は
(p及び(qでない)及び(rでない))または(q及び(rでない))
である。
ここで、
(p及び(qでない)及び(rでない))
については、
上図に書いたとおり、有り得ないことです。
そのため、反例は、
q及び(rで無い)
が成り立つ場合のみです。
(解答おわり)

【別解】
qについては、q及び(pでない)場合のみを考えて、命題を整理する。

(解答おわり)


リンク:
高校数学の目次

2013年10月28日月曜日

問題をやさしくする数学(19)座標系を変える



【問】実数a,bに関する条件p,qを次のように定める。
p: (a+b)+(a-2b)<5
q: (a+b)<1 または (a-2b)<4
次の①~④のうち、命題「q⇒p」に対する反例になっているのはどれか。
①a=0,b=0
②a=1,b=0
③a=0,b=1
④a=1,b=1

【解答】
命題「q⇒p」に対する反例は、
q及び(pで無い)が成り立つ場合である。

命題pとqが複雑なので、命題の式の方をX、Yとおいて命題を見やすくし、
q及び(pで無い)が成り立つ場合を以下の図の斜線であらわす。
図の円周上の点は(pで無い)条件を満足している。

上図の斜線の範囲にある(X,Y)がq及び(pで無い)が成り立つ場合である。
とりあえず、XとYでbをあらわすと、
b=(X-Y)/3
である。
そのため、Y=Xの直線上の点はb=0を満たす点であることがわかる。
b=0でY=Xの直線上にある場合は、
a≧√(5/2)
あるいは、
a≦-√(5/2)
がなりたつべきであるが、
①と②はこの条件を満足していない。よって反例では無い。

あとは、③と④を個々に調べれば良い。
③の、a=0,b=1の場合は、
X=1,Y=-2なので、qを満足しない。よって反例では無い。
④の、a=1,b=1の場合は、
X=2,Y=-1なので、qを満足する。
また、円周上の点なので、(pで無い)も満足する。
よって、④が反例である。
(解答おわり)


リンク:
高校数学の目次

2013年10月27日日曜日

計算ミス対策(19)計算の道を作る


http://schoolhmath.blogspot.jp/2013/11/blog-post_2.html
計算ミスを無くす方法
のサイトの助言がとても良いと思います。
 このサイトでは、計算ミスを少なくするための1つとして、
とにかく計算方法をどんどん覚えること
を推薦してます。
 的確なアドバイスと思います。

 以下のよう三角形の外接円の中心Oと一辺BCとの作る二等辺三角形OBCの面積を求める問題を解いてみます。
 最初の計算では、△OBC=2×△OBPとして計算します。
試験問題として答えは、(r・sinA)(r・cosA)までで十分で、これで解答が終わっています。

 試験問題を解くときには時間が無いのでできないことですが、問題を解いたら、次のように進むのが、数学の心を捉えた良い数学の学び方と思います。
 つまり、次に、その答えを、自分の知っている三角関数の倍角の公式を使ってsin(2A)の形に変形して結果がどうなるかを調べてみます。

 そしてこの答えを見ることで、△OBCの面積は、辺OBと辺OCと、その間の角(2A)のsinとの積の2分の1であるとして直ぐ答えを計算できることが見出せます。
 すなわち、最初の計算方法と、次に分かった計算方法との2つの計算方法があることがわかります。こうして自分が発見した(作った)計算の道の、その2つ目の解き方は自然に覚えられます。

 こうして、1つ問題を解く毎に、新しい計算の道も作って、2つ以上の解き方を覚えていくことができます。
 1問あたりに2倍の計算方法を覚えるので、確実に問題を解く力がついていきます。

 このように問題を解いた後に、その問題を更に解析してもう1つの解き方まで発見する時間はとても大切なものです。
 試験問題としてだけで問題を解くのは最低限度に留めて、
このように時間をかけて問題を何重にも解く時間をなるべく多く持つようにしましょう。

  そうすれば、問題を解く計算の道が網の目のように張りめぐらされて、どの計算の道にも熟達します。
 それにより、計算がつっかえて時間が足りなくなってあせるために起きる計算ミスを減らせます。


リンク:
高校数学の目次

2013年10月26日土曜日

計算ミス対策(18)計算の道を覚える



計算ミスを無くす方法
のサイトの助言がとても良いと思います。
 このサイトでは、計算ミスを少なくするための1つとして、
とにかく計算方法をどんどん覚えること
を推薦してます。
 的確なアドバイスと思います。

以下のよう二等辺三角形の底辺の長さxを求める問題の解き方の道が4つあります。どの道を進んでも結局cosAが必要になります。
どの計算の道も最後まで通れるように、計算の道を覚えておきましょう。
 そうすれば、計算がつっかえて時間が足りなくなってあせるために起きる計算ミスを減らせます。

必ず覚えるようにしましょう。





リンク:
高校数学の目次

2013年10月25日金曜日

計算ミス対策(17)図形を覚える



計算ミスを無くす方法
のサイトの助言がとても良いと思います。
 このサイトでは、計算ミスを少なくするための1つとして、
とにかく計算方法をどんどん覚えること
を推薦してます。
 的確なアドバイスと思います。

以下のように三角形の外接円の直径2rを計算する式を直ぐ思い出せるように、直径2rをあらわす形の式も覚えておきましょう。
 そうすれば、計算がつっかえて時間が足りなくなってあせるために起きる計算ミスを減らせます。

必ず覚えるようにしましょう。


リンク:
高校数学の目次

2013年10月19日土曜日

問題をやさしくする数学(18)面の法線への射影を利用した連立方程式の解法



【問】以下の連立方程式を解いて未知数sを求めよ。

【解答】
 連立方程式はベクトル方程式とみなして解くとやさしくなります。以下のようにベクトルの張る面に垂直な法線への射影を利用すると連立方程式の1つの未知数sを素早く求めることができます。

この式の水平面を張るベクトルbとcを、もっと使いやすいベクトルb’とc’に変更します。
(ここで、水平面には変わりがありません)

このように、成分の1つを0にしたベクトルb’とc’で水平面を張ります。
このベクトル方程式を以下のようにして解きます。 


(解答おわり)

① 先ず、問題の連立方程式の右辺のベクトルeのY成分のベクトルの高さを6zとしました。
② ベクトルbとcの張る面を水平面とする。ベクトルcのY成分の高さは①との関係で、高さ2zです。
③ ベクトルbのY成分の高さは①との関係で、高さzです。
④ ベクトルaのY成分の高さは①との関係で、高さ3zです。
⑤ ベクトルcは水平面上のベクトルなので、そのX成分はY成分による高さ2zを打ち消す高さ-2zです。
⑥ ベクトルeのX成分の高さは⑤との関係で、高さ-2z・2です。
⑦ ベクトルaのX成分の高さは⑤との関係で、高さ2zです。
⑧ ベクトルbは水平面上のベクトルなので、そのZ成分はY成分による高さzを打ち消す高さ-zです。
⑨ ベクトルeのZ成分の高さは⑧との関係で、高さ2zです。
⑩ ベクトルaのZ成分の高さは⑧との関係で、高さz/2です。

問題の連立方程式のsに掛かる高さは(⑦+④+⑩)であり、右辺の高さは(⑥+①+⑨)です。その比を計算してsが得られました。

【別解】ベクトルの外積を利用して計算すると、以下のように答えが得られます。

(解答おわり)
ベクトルの外積を利用する方が速そうです。


リンク:
高校数学の目次

問題をやさしくする数学(17)面の法線への射影を利用した連立方程式の解法



【問】以下の連立方程式を解いて未知数sを求めよ。

【解答】
 連立方程式はベクトル方程式とみなして解くとやさしくなります。以下のようにベクトルの張る面に垂直な法線への射影を利用すると連立方程式の1つの未知数sを素早く求めることができます。


(解答おわり)

① 先ず、問題の連立方程式の右辺のベクトルeのY成分のベクトルの高さを6zとしました。
② ベクトルbとcの張る面を水平面とする。ベクトルcのY成分の高さは①との関係で、高さzです。
③ ベクトルbのY成分の高さは①との関係で、高さ6zです。
④ ベクトルcは水平面上のベクトルなので、そのZ成分はY成分による高さzを打ち消す高さ-zです。
⑤ ベクトルbのZ成分の高さは④との関係で、高さ-z/2です。
⑥ ベクトルbは水平面上のベクトルなので、そのX成分はY成分とZ成分による高さを打ち消す高さ-11z/2です。
⑦ ベクトルaのX成分の高さは⑥との関係で、高さ(11z/2)(3/2)です。

問題の連立方程式のsに掛かる高さは⑦であり、右辺の高さは①です。その比を計算してsが得られました。

【別解】ベクトルの外積を利用して計算すると、以下のように答えが得られます。

(解答おわり)
ベクトルの外積を利用する方が速そうです。


リンク:
高校数学の目次

問題をやさしくする数学(16)垂直ベクトルへの射影を利用した連立方程式の解法



【問】以下の連立方程式を解いて未知数sを求めよ。

【解答】
 連立方程式はベクトル方程式とみなして解くとやさしくなります。以下のようにベクトルbを水平線にし、その水平線への垂直線ベクトルhへの射影(高さ)を利用するとベクトルaに掛かる未知数sを素早く求めることができます。

このベクトル方程式で、垂直線ベクトルhへの射影(水平線bの上の高さ)を以下のように計算します。
(解答おわり)

① 先ず、問題の連立方程式の右辺のベクトルeのX成分の高さを6zとします。
② uに掛かるベクトルbを水平ベクトルとする。そのベクトルのX成分の高さは①との関係で、高さzです。
③ sに掛かるベクトルaのX成分の高さは①との関係で、高さ9zです。
④ uに掛かるベクトルbは水平ベクトルなので、そのY成分はX成分による高さzを打ち消す高さ-zです。
⑤ sに掛かるベクトルaのY成分の高さは④との関係で、高さ-3z/4です。

問題の連立方程式のsに掛かるベクトルaの総体の高さは③と⑤の合計であり、右辺のベクトルeの高さは①です。その比を計算してsが得られました。


リンク:
高校数学の目次

2013年10月16日水曜日

問題をやさしくする数学(15)線の垂直線への射影の利用



【問】以下の図で三角形ABCがある。その辺(延長線)上に図のようにDF点を置く。直線ACと線DFの交点をEとする。この場合に、比s=CE/EAを求めよ。

【解答】
 以下では、線DFに垂直なベクトルVへの各ベクトルの射影を見て交点Eにおける比s=CE/EAを求める。
(そのベクトルの射影の長さは、線DFを水平線とした場合のベクトルの高さです)

(解答おわり)

上の解答では、ベクトルFBの高さをzとして、図に順次に、水平線DFに対する各点の高さを書き込みました。

 この問題の解答は④の計算までで終わりですが、
⑤の式のように、計算結果を整理すると、メネラウスの定理が導けました。
 この問題はメネラウスの定理の応用問題だったのです。

 このように、線の垂直線への射影を利用すれば、メネラウスの定理が自然に導けるので、メネラウスの定理を覚えるよりは、線の垂直線への射影の利用方法を優先して覚えてください。
(ベクトルBDとベクトルDCは逆方向なので、線分の長さの比はマイナスとして計算し、積がマイナス1になる式が正確なメネラウスの定理です。
 しかし、この積をプラス1とした式でメネラウスの定理があらわされる場合が多いので、メネラウスの定理の表現は不正確だと思います)


リンク:
高校数学の目次

2013年10月14日月曜日

計算ミス対策(16)計算のリズムを作る



計算ミスについては,以下のサイトの助言が的を得ていると思います。 

数学について
2012.09.28

 ・計算ミスをなくすには
 単純な計算でもまずは時間を気にせず"バカ丁寧"なくらいに綺麗な解答を作ってください。
 頭で暗算できそうでも、途中式を一文しっかり書く。
 ノートにはバラバラなところに計算しないで、問題の式を書いたらその下に途中式を綺麗に書く。筆算は横に書く。
 そんな風に、ずっとやっていくと、自然と自分で計算をするときのリズムができてきます。
 リズムができると、一気に計算スピードがあがるので、整った計算をしても素早くできます。


リンク:
高校数学の目次

計算ミス対策(15)計算のリズムを覚える



計算ミスについては,以下のサイトの助言が的を得ていると思います。 

WEB版ふじのもり通信

(04 計算力をアップしよう)


 今回はできるだけ自力で、計算の実力をアップさせる勉強方法について書いていこうと思います。小学校高学年や中学生で、整数・分数・小数の四則計算(たし・ひき・かけ・わり算)が上手に出来ない、計算ミスが多いという人がいれば、ためしにチャレンジしてみて下さい。
 とにかく「自分は計算が弱いかも?」と感じたら、すぐ練習に入るのがお勧めです。はじめる時期が遅くなればなるほど、状況は厳しくなってきます。

 それでは、自分で進む計算力向上の勉強。手順にいきたいと思います。
手順1
 まず、自分がどこでつまずいているのかを確認したいところです。けれど、実はこれがとても難しい。自分がどこが出来ないのかは、自分でも正確にわからないことがほとんどです。
 もし可能ならば、自分の勉強をしっかりと見てもらっている先生とか保護者の方にアドバイスをもらうと良いでしょう。それ以外の人は、とにかく問題を解いて練習します。簡単すぎると思うかもしれませんが、思わぬところでつまずいている人が結構いるものです。
手順2
 次には問題集を用意しましょう。
 計算のやり方を聞ける人がいるならば、どんな問題集でもいいのですが、完全に自分一人だけでやるという人は、あるていど解き方の説明がのっている問題集を選んだ方がよいと思います。
手順3
 ここからはひたすら問題を解いていくのみです。ここで大切なことは、「計算は書いてやる」ということです。問題集の中でも良いですし、別に計算用紙を用意しても良いです。計算中のメモや途中の計算、筆算した部分などをしっかり書きながらやって下さい。中途半端な暗算はしてはいけません。(そろばんの経験者を除く)また、前にも書いたように、消しゴムは使わない方が良いです。
 途中の計算を書かない人ほどミスが多くなる傾向があります。計算は書いてやるもの、紙は汚すものだと思って下さい。そして、頭だけでなく手の感覚で計算のリズムを覚えていくのです。
手順4
 1ページできたら、自分で答あわせをしてください。間違いはすぐに直しておきましょう。
 もし、「間違いが多い」、「やり方がいまひとつ分からない」というような状態なら、その単元は復習が必要です。かならずもう一回その部分をやり直さないといけません。
 弱点の復習も完成したら終了です。

 最初はめんどくさくて苦しいと思います。しかし、同じような計算をやり続けて体が計算のリズムを覚えてくると、何とも言えない快感を感じるようになります。(人によると思うので、保証はしませんが・・・)そうなれば、その計算法はおそらく一生忘れません。ミスもほとんどしなくなるでしょう。
 また、計算練習は絶対に裏切りません。誰でも時間をかけて努力すれば、必ず計算力は向上します。そして、計算力が上がると算数や数学の力だけでなく、理科や社会などの力も自然に上がってしまいます。とってもお得です。

リンク:
高校数学の目次