2017年8月31日木曜日

双曲線の二接線の交点を求める

【問1】
 双曲線(x-y=1)に対して、
接点a(a,a)から引いた接線と接点b(b,b)から引いた接線の交点p(p,p)を求めよ。
(参考)接点aと接点bから引いた2つの接線の交点pを、双曲線の極線abに対する極と呼びます。

【解答】
双曲線の式を、以下の式1のf(x,y)=0であらわす。
接点aとbとに、以下の式2と3が成り立つ。
双曲線の接線の公式により、接点aとbとの2つの接線は、以下の式4と5であらわせる。
式4と5を連立させて、2つの接線の交点p(p,p)=(x,y)を求める。
この接点の式を、以下の、双曲線の2点の座標の公式を使って更に変形する。
<双曲線の2点の座標の公式>
「この式10の左右の項が互いに置き換えられる」
ということが、
双曲線の2点の座標の公式です。

式6を変形する。
この式11に、公式10を代入する。
次に、式7を変形する。
この式13に公式10を代入する。
式12と式14をまとめる。
(解答おわり)

(補足)
 式15は、2つの接線の交点pの位置ベクトルは、点aと点bの中点mの位置ベクトルに平行であることを示している。
また、式15は、点aと点bの中点mの位置が双曲線に近づけば、点pが中点mに近づくことを示している。

リンク:
高校数学の目次

2017年8月27日日曜日

ベクトル方程式で円の二接線の交点を求める

【問1】
 座標原点を中心にする半径1の円(x+y=1)に対して、
接点B(b,bから引いた接線と、接点C(c,cから引いた接線の交点A(a,aをあらわすベクトルを求めよ。
(参考)点BとCから引いた円の接線の交点Aを、直線BCに対する円の極と呼びます。

【解答】
線分OAの長さをaとする。


点BとCの中点をEとする。
2角が等しいため、△ABO∽△BEO
∴OA/OB=OB/OE
a/1=1/OE
OE= 1/a
すなわち、ベクトルOEの長さは1/aで、OAの長さはaである。
そして、ベクトルOAはベクトルOEに平行なので、ベクトルOAは以下の式で計算できる。
(解答おわり)

(別解)
長さgのベクトルEB=βはベクトルOEに垂直である。
そのベクトルEBを90度回転したベクトルαはベクトルOEに平行なベクトルである。
以下では、そのベクトルαを使って、ベクトルOAをあらわす式を計算する。
(解答おわり)

(補足)
 ベクトルOAをあらわす解答の式は、式5と式7との、異なる2つの形の式であらわされた。
 この2つの形の異なる式は、同じ値をあらわし、両者とも、これ以上単純な式であらわすことができない同等な解である。
 この解は、ここをクリックした先のページで、複素数平面の助けを借りて統一された1つの単純な形で表現できる。

 また、この式5の形の解は、xy座標系であらわした接線の式の連立方程式の解では容易には導けない(連立方程式を解くと、通常は、式7の形の解が導かれる)という特徴がある。
 この式5は、以下のベクトルの公式を使うことで、式7に変換できる。
<大きさが同じベクトルbとcの要素の計算の公式>
 この式4の公式を使って、式5であらわしたベクトルOAの1つの成分を変換する。
こうして、式7であらわしたベクトルOAの成分が得られた。
式5であらわしたベクトルOAの残りの成分についても同様に計算すれば、式7であらわしたベクトルOAの成分が得られる。

 また、三角関数を使うと、この2つの式は以下の式に単純化される。

リンク:
高校数学の目次

2017年8月25日金曜日

困った時に使う部分積分法

「微分・積分」の勉強

(6)積分の知識:
 「部分積分法」
ここをクリックした先のページのpdfの110ページ(「微分積分学入門」著者:横田 壽)に、部分積分法が書いてあります。

3.3 部分積分法(integration by parts)
置換積分法を用いて.かなりの積分が求められるようになりました.しかし,置換積分法でも手に負えないものがあります.

 ではどうすればいいのでしょうか.そこで,置換積分を用いても不定積分が求められないとき,最後の手段として用いるものに,部分積分法(integration by parts) があります.


定理3.5 (部分積分法)

f(x), g(x) が連続であるとき,次の式が成り立つ.
この式1が部分積分法の公式です。
この式1は、以下の式2の形にして使うことができます。

【例題】
 この積分を計算します。
(解答はじめ)
先ず、以下の媒介変数 f を導入します。
式2の部分積分の計算をします。
 こうして、積分ができました。
(解答おわり)

リンク:
高校数学の目次

2017年8月18日金曜日

高校2年生も覚えるべき置換積分法

「微分・積分」の勉強

(6)積分の知識:
 「置換積分法」
ここをクリックした先のページのpdfの108ページ(「微分積分学入門」著者:横田 壽)に、置換積分法が書いてあります。

3.2 置換積分法(integration by substitution)
不定積分∫f(x)dx を求めるときに,

f(x)dx の x を媒介変数 t の関数g(t) に置き換えることにより,
f(x)dx を f(g(t))g’(t)dt という,積分し易い形に変形することを置換積分法(integration by substitution) と いいます.

定理3.4 (置換積分法)
f(x) が連続であるとき,

x = g(t) とおくと,g(t) が微分可能であれば,

が成り立つ.


(証明開始)
(1)先ず、xを媒介変数 t の関数g(t)で表す。
xはtが変化したときにどのくらい変化するか調べるため、x=g(t)をtで微分する。
x=g(t)がtで微分可能((Δx/Δt)の極限が有限の値になる)なら、
Δxが以下の式であらわされる。
(2)その場合に、以下の式が成り立つ。
ただし、xで積分するxの積分範囲がg(a)からg(b)までの場合に、
tで積分するtの積分範囲は、aからbまでにする。
(証明おわり)

(置換積分の例題)
下図の関数の積分を考えます。
この積分は、以下の様に変数xを変数tに変換する置換積分で計算することができます。
=2
です。
この変数変換をすると、A点からB点までの積分は、下図の関数の積分に変わりました。
そのため、積分が簡単になり、
積分結果が2になりました。
(例題おわり)

(補足)
この関数の積分は、A点からC点までの範囲までならばリーマン積分が可能です。
その積分可能範囲は、C点をB点に近付けた場合の積分結果の極限値をB点までの積分値であると、積分可能範囲の定義を拡張できます。

 一方で、この積分は、以下の様に変数xを変数tに変換する置換積分で計算できました。
この変数変換をすることで、A点からB点までの積分は、下図の関数の積分に変わりました。
上図の積分の場合、A点からB点までの範囲での関数の値が有限値なので、リーマン積分が可能です。
この変数tに変換した積分のA点からB点までの積分可能範囲が、変数xでの積分の、拡張した積分可能範囲と一致しました。

リンク:
高校数学の目次

2017年8月17日木曜日

微分積分はどうすれば勉強できるか(2)

「微分・積分」の勉強
 高校2年生から、極限・微分・積分の「意味がわからない」「つまらない」「教わる計算方法が正しいと言える理由(証明)がわからない」で数学の学習から脱落する高校2年生が多いらしい。
 その脱落の原因を考えます。

高校では、定積分を以下のように教えています。
【関数f(x)の定積分を以下のように定義する】
(1)微分したらf(x)になる関数F(x)を見つけること。
この関数F(x)を原始関数と呼ぶ。
この原始関数を使って、以下の計算で定積分する。


【問題点】
 数学センスを持つ人が知っている以下の常識があります。
「何かが存在するならば、それで何かができる」という定理であって、
その存在する「何か」の集合がどういうものであるかが示せない、
言い換えると、その定理がいつ使えて、いつ使えないかを示せない、
という定理には、定理としての価値が無い』と言う常識です。
例えば、
「関数f(x)にxを掛け算した関数をF(x)とする。このとき、F(x)の微分がf(x)となる関数F(x)が存在するならば、その関数F(x)がf(x)の積分である」
という「定理」には価値が無い。
f(x)=1の場合
F(x)=xとなり、たしかにこの「定理」が成り立っている。
f(x)=xの場合、
F(x)=xとなり、
F’(x)=2x≠f(x)なので、この定理が規定する存在条件を満足する関数F(x)が無い。
よって、この場合も、この定理には矛盾がない。

 しかし、この論理には大きな欠陥があります。
「言っていることが成り立つ場合に、その定理が使える」
という条件を加えた定理は、いつだって成り立ちます。なぜならば、成り立たない場合は、その定理の適用範囲外だと規定しているからです。
 この「定理」は、いつ使えるかを明確化した定理に書き換えることができ、その書き換えた定理は:
「関数f(x)にxを掛け算した関数をF(x)とする。関数f(x)が定数である場合に限り、その関数F(x)がf(x)の積分である」
というように、内容を明確化して書き換えることができます。
 このように、いつ使えるかを明確化してみると、元の「定理」は、いつ使えて、いつ使えないかを定義せずあいまいにしている「ごまかし」があっただけとわかります。定理は、このように明確化しなければなりません。
 そのため、いつ使えて、いつ使えないかを定義していない定理は、
解くべき問題(いつ使えて、いつ使えないかという問題)を解かずに、
問題をあいまいにしている「ごまかし」があるので、
定理としての価値がありません。

【関数f(x)の定積分を以下のように定義する】では、原始関数F(x)が存在すれば、という適用除外条件があり、しかも、その適用が除外されない、存在するF(x)とはいかなるものかということが定義されていないので、無価値な定義です。
 原始関数の正しい定義は、以下のように定義できます。
【原始関数の正しい定義】
 微分不可能な点が無限にある関数F(x)もあります。その微分不可能な点では、その関数F(x)は原始関数ではありません。
 ただし、変数xの定義域から、微分不可能な点の変数xの値を除外した定義域では、その関数F(x)が原始関数になります。
(原始関数の定義)
 関数F(x)をxで微分する。その場合に、変数xの値のある範囲で微分でき、微分係数が与える関数がf(x)となった場合、
関数F(x)を、そのxの範囲に係わる関数f(x)の原始関数と呼び、
関数f(x)を関数F(x)の導関数と呼びます。
【原始関数の作り方】
 以下の式で定積分(定積分とは何かは後で説明します)をあらわすことができる関数F(x)を求める計算を積分と呼ぶ。

ここで得た関数F(x)を不定積分と呼ぶ。
この関数F(x)が、変数xのある範囲で微分できた(微分可能な)場合に、すなわち、
が成り立つ場合に、
F(x)は、先の原始関数の定義に従って、
xのその範囲に係わるf(x)の原始関数です。
(定義おわり)

 “論証"・論証"とやかましくいっておきながら,微積のところへ来ると,とたんにいいかげんな議論でごまかしている。一ーまた高校ではごまかさざるを得ないだろう。高校数学の目的は生徒のあたまを混乱させることにあるのだろうか。

 現在の高等学校の教科書は,積分の概念の説明を回避している。



 1997年からは、日本の高校の数学IIで面積が無定義に用いられという、数学センスを否定する蛮行が行なわれた。そして、関数f(x)のグラフとx軸で囲まれる領域の面積を,x方向で微分するともとの関数f(x)になり、面積の微分がf(x)となるという本末転倒なことを教えるようになった。
 このような、数学センスに反する無価値な情報をおぼえることを強制された場合、それを覚えることを拒否して良いと考えます。
 一つの選択としては、理系に進むのを止めて文系に進むことがあります。
 しかし、数学が好きな学生には、それはできない、と考えます。
その学生のために、以下の様に微分積分を学ぶことを推薦します。

(微分積分の学び方)
 ヨーロッパやアメリカでは、「高校で微分積分を教えるのは、直観にうったえる内容に限られ、正確な微分積分を教えられない」という理由で、微分積分は大学生に教える科目になっています。
 日本の大学でも、その欧米の教育に合わせて、初めて学ぶ者に分かるように微分積分を改めて教育しているようです。
 大学で使う微分積分の参考書は、高校で教える微分積分の知識を全く知らない学生に理解できるように書かれています。
 しかも、大学生向けの微分積分の参考書の方が、日本の高校生向けの微分積分の参考書よりやさしく分かり易い。

 高校の微分積分を勉強するなら、先ず、大学生向けの微分積分の参考書を読むことを推薦します。高校の微分・積分の教科書は分かりにくいだけで無く、間違いも含まれています。読まない方が良いのではないかと考えます。
 微分については、大学生向けの参考書で無料でダウンロードできる、
「微分積分学入門」(横田 壽)
を読んでみることをお勧めします。
(しかし、同じ著者の書いた高校生向けの参考書「確実に身につく微分積分(2012年)」の1版は、内容が劣化しているのでお勧めできません。大学生向けの本物の知識の参考書「微分積分学入門(2004年)」を読んでください。)

「微分積分学入門」(横田 壽)の読み方は、 66ページから始まる2章「微分法」の以前のページは斜め読みして、何が書いてあるらしいかを漠然と把握しておいて、
66ページ以降の2章「微分法」をお勧めします。
読んでいるうちに知らない関数や概念が出てきたら、66ページ以前に書いてありますので、探して、その部分を読んで理解するように勉強してください。

 積分については,ここをクリックした先のpdfファイルにある原教授の以下のコメントが大切です。
---(原教授のコメント開始)---------
 積分については高校でも習ってはいるが,その基礎を突き詰めていくといろいろと困ったことがでてくる.
特に 「積分は微分の逆演算」として定義すると,「ある関数 f の積分を求めよ」という問題や「この関数の積分は定義でき るか?」という問題でハタと困ってしまう.
(微分して f になるような関数がわからない場合,高校までの知識ではお手上げだ.)
この節では高校までの知識はいったん忘れて,「積分とは何か」「積分をどのように定義すべきか」か ら話を始める.

4.1 積分(定積分)の定義
 ということで,まずやるべきは「与えられた関数f(x) に対して,その積分を定義すること」である.
これから見ていくように,かなり広いクラスの関数に対してその積分(定積分)を定義することができる.
定積分を通して不定積分も定義できるので,高校までの知識とのつながりがつくことになる.
・・・
積分の最も素朴な定義はこれから紹介する「リーマン和」に基づくもので、、、
---(原教授のコメントおわり)------ 


「微分積分学入門」(横田 壽)は、積分の説明もわかり易いのでお勧めですが、先ずは124ページのリーマン積分を読んでから、次に、その前のページに書かれている積分の説明を読んで欲しい。
 
(積分の計算の基本) 以下のグラフのように、面積を分割して、分割した要素の総計を求めてグラフの面積を計算する手法が「定積分」です。
 この計算のための法則性を整理して覚えることが「積分」を勉強するということです。

(「リーマン積分可能」の定義)
「微分積分学入門」(横田 壽)の124ページから125ページに「リーマン積分可能」の定義が書いてあります:

 ここではドイツの数学者G.F.B. Riemann (1826-1917) によって示されたRiemann 積分につ いて学んでいきます.リーマン積分による「積分可能」の定義は、全ての種類の「積分可能」の定義の基礎になっています。
  f(x) は閉区間[a, b] で定義されているとします.この閉区間[a, b] を次のような点xi(i = 1, 2, . . . , n) でn 個の小区間に分割します.
(a = x0 < x1 < x2 < · · · < xi < · · · < xn = b)

 この分割をΔ で表わし, Δxi = xi − xi−1 (i = 1, 2, . . . , n) のうちで最も大きい値を|Δ| で 表わします.
いま,それぞれの小区間[xi−1, xi] のなかに任意の点ξi をとり,Riemann 和 (Riemann sum) とよばれる次の和を考えます.

このとき、
となる実数S が存在するならば,このS をf(x) の定積分(definite integral) といい, f(x) は閉区間[a, b] で積分可能(integrable) であるといいます.また,このS を次のように表わします.
つまり関数f(x) が閉区間[a, b] で積分可能であるということは,分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まるということです.

 この定義に従い、関数の積分可能性を以下の様にして調べることができます。
先ず小さな閉区間[a, b] を定めて、
その閉区間の小区間への分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まる(積分可能)か否かを調べることができます。 

(積分可能な例1)
以下の図の関数f(x)のグラフを考えます。
この関数は、x=0の点での極限とx=2の点での極限が存在しません。
x=0の点とx=2の点で関数は不連続であり、また、極限も存在しませんが、
-1≦x≦3
の区間を細分した各小区間での関数の値の和が一通りに定まるので、その不連続点を中間に持つ区間でも積分可能です。
この関数f(x)を積分して、以下の図の関数F(x)を求めることができます。
この関数F(x)を微分して下図のグラフの関数を求めます。
x=0とx=2の点では、微分係数が存在しないので、その点では微分できません。
この(dF(x)/dx)のグラフは、x=0とx=2で関数値が存在しないという点で、関数f(x)と異なるグラフになるという特徴があります。
(関数f(x)の原始関数について)
変数xの、x≠0とx≠2の範囲に係わる関数f(x)の原始関数がF(x)であると言えます。

 この微分結果のグラフを再度積分したらどうなるでしょうか。
その積分結果は、再び同じ関数F(x)が得られると考えます。
x=0の点とX=2の点の有無で異なる2つのグラフを積分したら、同じ関数F(x)が得られました。
そのため、関数f(x)に積分結果の関数F(x)を対応させる写像変換は、
2個以上の関数f(x)に1つの関数F(x)を対応させる、
複数対1の写像であると考えられます。

 特に、積分では、被積分関数が連続関数である場合と、その連続関数の1点の関数値が存在しない(あるいは0等の値になる)不連続関数である場合とが区別できない。
(不連続関数f(x)の積分と、その微分の例)
 関数f(x)を:
変数xが整数の点では関数値が存在せず、
変数xが整数以外の点では値が1、
である不連続関数とします。
(上図において、x=整数の不連続点のxの値に対して、そのxの値における極限の値をf(x)の値に置き換えてf(x)=1とすれば関数が連続関数になります。そういう不連続点のことを、「除去可能な不連続点」と呼びます。)
 この不連続関数 f(x)のグラフを積分したら、
連続な関数 F(x)=xが得られます。
この連続関数F(x)=xを微分したら、
連続関数であるy=1が得られます。
(関数f(x)の原始関数について)
整数以外の変数xの範囲に係わる関数f(x)の原始関数がF(x)=xであると言えます。

 このように、微分積分学では、あらゆる関数に微分積分を行う理論を作ろうとすると、いろいろな難しい問題があることがわかりました。
 関数f(x)の変数xの一部の区間での積分結果がF(x)となる関数F(x)と元の関数f(x)との間の微分積分のあり得る関係が以下の図であらわせます。
(上図で、関数f(x)は、除去可能な不連続点を除去した関数です。関数F(x)は、変数xの値の範囲が、x1とx4を除いた範囲でf(x)の原始関数です。一方、関数F(x)は、変数xの値の範囲が、x1を除いた範囲で関数f(x)の原始関数でもあります
 このように、関数の不連続点がらみで、関数f(x)とF(x)の間に難しい関係があることが分かりました。

 微分積分学で、難しい問題が生じない関数の範囲を把握して、その範囲内で微分積分の計算をすることで、応用上で微分積分を使い易くできます。
 そのため、使い易い関数として、極限が存在し、かつ、連続な「連続関数」 を主に扱う対象にし、また、「微分可能性」で関数の変数の定義域を制限して、微分積分を行う範囲を制限します。その範囲内で成り立つ法則を把握して、種々の公式を導き出して使うことで微分積分学を最大限に応用できるようになります。

 微分積分学は、微分可能な関数と積分可能な関数を定義して、その種の関数の間で微分したり積分をします。「微分可能」と「積分可能」という制限条件を定め、その制限条件を満足する関数を扱うのが微分積分学だと認識することがとても大切です。

リンク: 
高校数学の目次