2017年6月14日水曜日

「微分・積分」はどうすれば勉強できるか

「微分・積分」の勉強

 高校の数Ⅱで、微分・積分を学ぶようになり、その勉強がつまらなくなり数学を学ぶのをあきらめて文系に進むことにする学生が多いらしい。そうなる以前に早めに数学がつまらなくなることを見切って早々と文系に進むことに決める学生も多いらしい。

 そのため、このページでは、「微分・積分」をどうすればおもしろく勉強できるかというコツを考えます。

先ず、勉強の順番が、
(1)極限
(2)微分
(3)積分
になっている事が、
「微分・積分」の勉強をつまらなくしていると考えます。

 数学が好きでいつも数学を勉強している学生は、「微分・積分」の授業の順番には「微分・積分」を学んでいないと考えます。

 数学の問題を多く解いていて、数学の問題を解く技術を磨いてきた学生は、「微分・積分」の基礎的な概念は既に考えたことがあり、その概念も利用して問題を解いている。
 そして、「微分・積分」の授業に出会ったら、既に知っている自分の知識を整理するために役立てようとして授業を聞くから、「微分・積分」の勉強ができるのだと考えます。

 その、既に知っている「微分・積分」の知識とは、どのようなものかを以下で考えます。

 数学が好きでいつも数学を勉強している学生は、好奇心を満足させる面白いテーマの順に数学を学んで行くと思います。
 面白い数学の課題を見つける都度、その課題を自分で研究するという道草を食います。その道草の1つに、基礎的な「微分・積分」の概念の修得があると思います。

 そのため、以下では、その、面白い順に、「微分・積分」を学んでいこうと思います。

(1)積分
(2)微分
(3)極限
の概念の順に学ぶのが面白く、
それを学んだら、
(4)極限の概念の精密化
(5)微分の知識の整理
(6)積分の知識の整理
を勉強するのが、勉強の順番として適切だと考えます。

(1)積分:
 以下の問題を考えます。
【問題1】 
 なぜ、三角錐の体積Vは、
体積V=底面積S×高さh×(1/3)
なのか。
 この公式は、何とか覚えられたと思いますが、
もっと、すっきり覚える方法が無いか?
と考えたことがあると思います。
 この問題は、以下の様に分析することができます。
この解に法則性があるように思われますが、
この問題は難しいので、これを解くための準備として、
この問題をもっとやさしくした以下の問題を先に解くことにします。

 【問題2】
 なぜ、三角形の面積Sは、S=底辺L×高さh×(1/2)
なのか。
この問題ならば、上のような場合を考えて、解くためのヒントを見つけることができます。

この問題2で得られたヒントを拡張して、 
以下の様に問題1を解析します。

 【問題1】
これは、以下のグラフの面積を分割して計算することに対応すると考えることができます。
このように問題を解析することで、後は、この2次関数のグラフの面積を与える法則性を把握すれば、この種の問題が自由に解けるようになることが理解できます。

 この様に、分割した要素の総計を求めてグラフの面積を計算する手法が「積分」です。
 また、その計算のための法則性を整理して覚えることが「積分」を勉強するということです。

リンク: 
高校数学の目次

0 件のコメント:

コメントを投稿