2017年6月14日水曜日

「微分・積分」はどうすれば勉強できるか

「微分・積分」の勉強

 高校の数Ⅱで、微分・積分を学ぶようになり、その勉強がつまらなくなり数学を学ぶのをあきらめて文系に進むことにする学生が多いらしい。そうなる以前に早めに数学がつまらなくなることを見切って早々と文系に進むことに決める学生も多いらしい。

 そのため、このページでは、「微分・積分」をどうすればおもしろく勉強できるかというコツを考えます。

先ず、勉強の順番が、
(1)極限
(2)微分
(3)積分
になっている事が、
「微分・積分」の勉強をつまらなくしていると考えます。

 数学が好きでいつも数学を勉強している学生は、「微分・積分」の授業の順番には「微分・積分」を学んでいないと考えます。

 数学の問題を多く解いていて、数学の問題を解く技術を磨いてきた学生は、「微分・積分」の基礎的な概念は既に考えたことがあり、その概念も利用して問題を解いている。
 そして、「微分・積分」の授業に出会ったら、既に知っている自分の知識を整理するために役立てようとして授業を聞くから、「微分・積分」の勉強ができるのだと考えます。

 その、既に知っている「微分・積分」の知識とは、どのようなものかを以下で考えます。

 数学が好きでいつも数学を勉強している学生は、好奇心を満足させる面白いテーマの順に数学を学んで行くと思います。
 面白い数学の課題を見つける都度、その課題を自分で研究するという道草を食います。その道草の1つに、基礎的な「微分・積分」の概念の修得があると思います。


 そのため、以下では、その、面白い順に、「微分・積分」を学んでいこうと思います。
(1)積分
(2)微分
(3)極限
の概念の順に学ぶのが面白く、
それを学んだら、
(4)極限の概念の精密化
(5)微分の知識の整理
(6)積分の知識の整理
を勉強するのが、勉強の順番として適切だと考えます。

(1)積分:
 以下の問題を考えます。
【問題1】 
 なぜ、三角錐の体積Vは、
体積V=底面積S×高さh×(1/3)
なのか。
 この公式は、何とか覚えられたと思いますが、
もっと、すっきり覚える方法が無いか?
と考えたことがあると思います。
 この問題は、以下の様に分析することができます。
この解に法則性があるように思われますが、
この問題は難しいので、これを解くための準備として、
この問題をもっとやさしくした以下の問題を先に解くことにします。

 【問題2】
 なぜ、三角形の面積Sは、S=底辺L×高さh×(1/2)
なのか。
 
この問題ならば、上のような場合を考えて、解くためのヒントを見つけることができます。

この問題2で得られたヒントを拡張して、 
以下の様に問題1を解析します。

 【問題1(再)】
これは、以下のグラフの面積を分割して計算することに対応すると考えることができます。
(この計算で用いた2乗の数列の和の式はここをクリックした先のページにあります)

 このように問題を解析することで、後は、この2次関数のグラフの面積を与える法則性を把握すれば、この種の問題が自由に解けるようになることが理解できます。

 この様に、分割した要素の総計を求めてグラフの面積を計算する手法が「積分」です。
 また、その計算のための法則性を整理して覚えることが「積分」を勉強するということです。

(微分積分学の歴史) 

 ライプニッツが、1684年に「極大と極小にかんする新しい方法」を出版して、その中で微分法を発表し、
ついで1686年に「深遠な幾何学」を出版して積分法を発表しました。

 その後に、ニュートンが微分積分学を発表しました。

   それに対して、旧い数学者のバークレー司教(Bishop George Berkeley)が微分積分学を攻撃した論争が微分積分学を正しく育てました。
 バークレー司教は、ダブリンのトリニティ・カレッジで神学を学び、後に講義をする。アイルランド、クロインの(英国国教会の)監督Bishopとなる(1734)。

 バークレー司教は、数学から唯物論を追放する目的で、『解析者―不誠実な数学者へ向けての論説』(The Analyst: or a Discourse Addressed to an Infidel Mathematician, 1734)で、ニュートン・ライプニッツ理論(微分積分学)を攻撃し、大論争を引き起こす(『解析教程』第II章第1節参照)。
ド・モアブル、テイラー、マクローリン、ラグランジュ、ヤコブ・ベルヌーイ、ヨハン・ベルヌーイなどが論争に加わり、微積分学の論理的基礎づけに対する関心を高めた功績は大きい。
とくに、マクローリンは反論のためにニュートンの方法の厳密な構成を行った。


以下で、バークレー司教の微分積分学に対する感想を見てみます

『バークレー司教:解析者より』
  「しかし、速度の速度、その速度、そのまた速度、またその速度、またまたその速度などなどというのは、私が間違っているのでなければ、すべての人間の理解を越えてしまっています。

精神がこの捉え難いアイデア(微分積分学)を解析し追及すればするほど、それはまごつき狼狽えることになり.....」

『バークレー司教:解析者より』
  「......我が時代の解析者
(微分積分学)は有限の量の差を考えるだけでは満足しません。
彼ら(微分積分学)はさらにその差の差を考え、最初の差の差の差を考えます。 そしてさらに無限にまで。
 つまり彼ら
(微分積分学)は認識できる最小の量よりさらに無限に小さい量を考えます。
その無限に小さい量よりもさらに無限に小さな量を、そしてその上これまでの無限小量よりもさらに無限に小さい量を考え、終わりも限界もないのです。
......もう告白するしかありませんが、無限に小さい量を心に描くことは ......私の能力を超えています。
しかし、そのような無限に小さい量の、それよりさらに無限に小さい一部、だから結局それを無限倍したとしても最も微細な有限の量にまでなることもできない、そんなものを想像するということは、どんな人にとってもそれこそ無限に困難なことだろうと、私は思うのです。.....」

『バークレー司教:解析者より』
  「そして、この流率(微分)とは何だろうか?

  無限小の増分の速度。 そして、これら同じ無限小の増分の速度とは何なんだろうか?
  これらは有限の量でもなく、無限に小さい量でもなく、無でもない。 こんなものなら、過ぎ去った量の幽霊と呼んではいけないというのだろうか? 」

 ニュートンとライプニッツの微分は、「無限小」の概念が十分に論理付けされていなかったため、今日のような厳密さが欠けていただが、微分は、力学や天文学などで応用可能、しかも実用的であったため、ベルヌーイやロピタル、オイラー、ラグランジュ、ラプラスなどの研究によって普及していった。

 微分学が厳密性を伴うようになったのは、19世紀に入ってからである。仏の数学者コーシーは、1821年に発表した「解析教程」で「極限」や「無限小」、「連続関数」の概念を定義し、解析学の基礎を刷新し、その後デデキントやカントールによる実数論などを経て、今日の微分の基礎が完成した。


(補足1)
 微分と積分は,歴史的にも,数学的にも,別々に定義される. 独立して定義されたものが,結びついている。 (日本の高校の微分積分の教科書ではいちばん大切な数学の発見が,次代に伝わらない。) 

(補足2)
(「リーマン積分可能」の定義)
「微分積分学入門」(横田 壽)の124ページから125ページに「リーマン積分可能」の定義が書いてあります:

 ここではドイツの数学者G.F.B. Riemann (1826-1917) によって示されたRiemann 積分につ いて学んでいきます.リーマン積分による「積分可能」の定義は、全ての種類の「積分可能」の定義の基礎になっています。
f(x) は閉区間[a, b] で定義されているとします.この区間[a, b] を次のような点xi(i = 1, 2, . . . , n) でn 個の小区間に分割します.

(a = x0 < x1 < x2 < · · · < xi < · · · < xn = b)

 この分割をΔ で表わし, Δxi = xi − xi−1 (i = 1, 2, . . . , n) のうちで最も大きい値を|Δ| で 表わします.
いま,それぞれの小区間[xi−1, xi] のなかに任意の点ξi をとり,Riemann 和 (Riemann sum) とよばれる次の和を考えます.

このとき、
となる実数S が存在するならば,このS をf(x) の定積分(definite integral) といい, f(x) は[a, b] で積分可能(integrable) であるといいます.また,このS を次のように表わします.
つまり関数f(x) が[a, b] で積分可能であるということは,分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まるということです.

 この定義に従い、関数の積分可能性を以下の様にして調べることができます。
先ず小さな閉区間[a, b] を定めて、
その区間の小区間への分割の仕方および点ξi(i = 1, 2, . . . , n) のとり方に関係なく、各点の関数値の和が一通りに定まる(積分可能)か否かを調べることができます。 

(積分が不可能な関数)
 下のグラフの関数f(x)のように、どの位置においても関数の極限が存在しない関数があり得ます。
 例えば、 
xが有理数の場合にf(x)=0であって、
xが無理数の場合のf(x)=1
という、極限が存在しない関数f(x)などです。
 そういう、極限が存在しない関数f(x)を積分して関数F(x)を得た場合(もし積分できた場合)、その積分により得られた関数F(x)は微分可能だろうか。
 そもそも、微分の計算は極限を求める計算なので、その関数f(x)が積分できても、その積分した関数F(x)を微分した場合に、元の関数f(x)は(極限値が存在しないので)、微分によっては得られないと考えます。  

 上図の関数f(x)の変数x=x1からx=x2までの変数xの範囲をn等分して、その区分した部分毎にf(x)の値f(ξ)を求めて、その値の和で積分します。
(1)その際に、 変数x=ξが全て有理数なら、f(ξ)=0になり、積分結果は0になります。
(2)一方、変数x=ξが全て無理数√2の有理数倍なら、f(ξ)=1になり、積分結果は(x2-x1)になります。
(3)区分の仕方によって結果が変わるような計算の値は定かでは無いので、その様な関数f(x)は積分することができません。 

 このように、微分積分学では、あらゆる関数に微分積分を行う理論を作ろうとすると、いろいろな難しい問題があることがわかりました。
 微分積分学で、難しい問題が生じない関数の範囲を把握して、その範囲内で微分積分の計算をすることで、応用上で微分積分を使い易くできます。
 そのため、使い易い関数として、極限が存在する「連続関数」 を主に扱う対象にし、また、「微分可能性」で関数の変数の定義域を制限して、微分積分を行う範囲を制限します。その範囲内で成り立つ法則を把握して、種々の公式を導き出して使うことで微分積分学を最大限に応用できるようになります。

 微分積分学は、微分可能な関数と積分可能な関数を定義して、その種の関数の間で微分したり積分をします。

「関数を積分して、それを微分したら元の関数に戻る」 
という、微分積分学の基本定理がありますが、
その定理は、その関数f(x)の積分可能な部分に限り、かつ積分後の関数F(x)の微分可能な部分に限って成り立つ定理です。
 その定理の大前提に、何が微分可能で何が積分可能であるかの定義があります。

 微分積分を学ぶ者は、「微分可能」と「積分可能」という制限条件を定め、その制限条件を満足する関数を扱うのが微分積分学だと認識することがとても大切です。 
 しかし、この一番大切な概念を高校2年には教えない。高校3年に至っても「積分可能」の概念を教えていないようです。
 しかも、1997年からは、日本の高校の数学IIで面積が無定義に用いられという、数学センスを否定する蛮行が行なわれた。そして、関数f(x)のグラフとx軸で囲まれる領域の面積を,x方向で微分するともとの関数f(x)になり、面積の微分がf(x)となるという本末転倒なことを教えるようになった。
 このようなデタラメな教育では、高校生に微分積分が分からないのも無理無いと考えます。
 バークレー司教が、これを知ったら、「論外の教育だ」 と酷評すると思います。 

 (補足3:日本の微分積分の教育)
 ヨーロッパやアメリカでは、「高校で微分積分を教えるのは、直観にうったえる内容に限られ、正確な微分積分を教えられない」という理由で、微分積分は大学生に教える科目になっています。
 日本の大学でも、その欧米の教育に合わせて、初めて学ぶ者に分かるように微分積分を改めて教育しているようです。
 大学で使う微分積分の参考書は、高校で教える微分積分の知識を全く知らない学生に理解できるように書かれています。
 しかも、大学生向けの微分積分の参考書の方が、日本の高校生向けの微分積分の参考書よりやさしく分かり易い。

 高校の微分積分を勉強するなら、先ず、大学生向けの微分積分の参考書を読むことを推薦します。高校の微分・積分の教科書は分かりにくいだけで無く、間違いも含まれています。読まない方が良いのではないかと考えます。
 とりあえず、大学生向けの参考書で無料でダウンロードできる、
「微分積分学入門」(横田 壽)
を読んでみることをお勧めします。 
(しかし、同じ著者の書いた高校生向けの参考書「確実に身につく微分積分(2012年)」の1版は、内容が劣化しているのでお勧めできません。大学生向けの本物の知識の参考書「微分積分学入門(2004年)」を読んでください。)

「微分積分学入門」(横田 壽)の読み方は、 66ページから始まる2章「微分法」の以前のページは斜め読みして、何が書いてあるらしいかを漠然と把握しておいて、2章「微分法」以降を精読することをお勧めします。読んでいるうちに知らない関数や概念が出てきたら、66ページ以前に書いてありますので、探して、その部分を読んで理解するように勉強してください。

リンク: 
高校数学の目次

0 件のコメント:

コメントを投稿