2016年8月10日水曜日

三角形の外心の高さ

佐藤の数学教科書「図形と方程式」編の勉強


【問】三角形ABCの外心(外接円の中心)の座標Dを定める法則を探せ。

数学の新しい技術を学んだら、その技術の力を使って、何か新しい法則を見つけるよう心掛けましょう。

ここでは、外接円の中心座標Dを定める法則を探してみましょう。

(予備知識)
複雑な図形の問題は、より単純な図形の問題に置きかえて考えます。
(難しい形の問題は、全て、単純な形に置き換えて考えるのが数学のコツです。)

【解答】
先ず、頂点A,B,Cの座標を、点A(2m,2m)、点B(0,0)、点C(2c,0)と定義して、問題を解いてみる。
外接円の中心Dは、線分ABの垂直二等分線と線分BCの垂直二等分線(X=c)との交点を計算することで求める。

線分ABの垂直二等分線は線分ABの中点Mを通る直線である。

線分ABの垂直二等分線の式は、ベクトルMDとそれに垂直なベクトルMの内積が0であることをあらわす式である。

上の図のように、直線ABの垂直二等分線の式は、式1であらわされる。
(X-m)+m(Y-m)=0 (式1)

直線BCの垂直二等分線の式は、
X=c (式2)
であらわされる。
式1と式2を連立してY座標を計算する。
これで、D点のY座標を定める式の法則が得られた。
(解答おわり)

このYの値の式を、以下の様に分かり易く書き直します。
外心の高さYを与える式を変形すると、2番目の式のように、
余弦定理に類似した式が得られます。

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿