2015年5月6日水曜日

複素数平面のグラフの変換方法




【複素数平面のグラフの変換方法】
  以下の方法は、あらゆる形のグラフの変換に応用できる良い方法と考えます。
 この方法では、変換する元の複素数変数ωと変換した後の複素数変数zの座標の対応関係も明確という利点があります。

 複素数変数ωであらわされた任意の円のグラフに対して、複素数変数ωの逆数の複素数変数zのグラフを求めます。

 その複素数変数zのグラフがどの様な形のグラフになるかを知るには、以下の式のように、
(1)元のグラフをあらわす複素数変数ωを、複素数の定数βと実数の媒介変数θであらわす。
(2)そして、複素数変数zを、以下の式で定義される、複素数の定数εとδと、実数の媒介変数φであらわします。
 複素数変数ωがあらわす任意の円のグラフは、その逆数に変換したz=1/ωのグラフが、この式であらわされるような形の円のグラフになります。

 次に、複素数変数zをあらわす複素数定数εとδを、元の複素数変数ωをあらわす複素数定数βであらわす式を求めます。
 先ず、上式で定義した媒介変数φの定義に従って、以下の式が成り立ちます。
こうして、複素数の定数εとδを、複素数の定数βであらわせました。

(例1)
β=1の場合は、円の式をあらわす複素数の変数ω(実数の媒介変数θであらわす)を逆数に変換した結果の変数zは、以下の様に直線の式に変換されます。

(例2)
β=-1の場合も、以下の様に直線に変換されます。 

(例3)
 変換する元の変数ωのあらわすグラフが直線の場合は、その逆数の変数zのあらわすグラフは、以下の様に(実数の媒介φであらわされる)円に変換されます。

リンク:
高校数学の目次

0 件のコメント:

コメントを投稿