2013年8月30日金曜日

ベクトル方程式で三角形の外接円の中心の位置ベクトルを求める

大学への数学「ベクトル」編の勉強

これは、ここをクリックした先の問題の解答です。

【問1】三角形OABの外心(外接円の中心)Dの位置ベクトルをもとめよ。
なお、点Oは原点、頂点A,Bの座標は、点A(a,0)、点B(b,b)とする。

【解答方針】
ベクトル方程式の問題は、
「2次元空間の全てのベクトルは、2つの独立なベクトルの係数倍の和であらわすことができる」
という基本原理を用いて、2つのベクトルを決めて、そのベクトルの係数を計算することで求める。


【一番簡単な解き方の秘訣】
 (あるベクトルbとqとが互いに垂直であるという条件のある図形の問題を解くときは、
(1)それらのベクトルbとqを、互いに垂直な単位ベクトルxとyの合成であらわして、
(2)そして、ベクトルbとqが垂直である条件として内積が0であるというベクトル方程式を作って計算すると、
計算が一番簡単になります。)

しかし、以下では(1)の秘訣は使わずに問題を解いてみます。


【解答】
2つの独立なベクトルとして、ベクトルOAとベクトルOBを用いることにする。
そして、求めるベクトルODを以下の式(1)であらわす。

外接円の中心Dの位置ベクトルODは、線分ABの垂直二等分線と線分BCの垂直二等分線との交点であるので、以下の式(2)(3)(4)の関係がある。
式(3)に順次に式(2)と(1)を代入して計算する。
式(4)に順次に式(2)と(1)を代入して計算する。
式(5)と(6)を連立して係数sとtを計算する。
式(7)と(8)を式(1)に代入してベクトルODをあらわす。
(解答おわり)


【補足研究】
上の解答を、ベクトルaと、それに垂直なベクトルgとであらわしてみます。
ベクトルbは以下の式(10)であらわされます。式(10)を(9)に代入して計算します。

この式(11)のベクトルaとベクトルbの内積にベクトルの要素を代入して計算する。
式(12)で、ベクトルODが、ベクトルaと、それに垂直なベクトルgとであらわせました。

ベクトルgの係数が0になる場合は、三角形OABの∠Bが直角の場合です。
∠Bが90°より小さいと、ベクトルgの係数が0より大きくなり、
∠Bが90°より大きいと、ベクトルgの係数が0より小さくなります。

 上の研究の結果、式(12)であらわした方が、式(9)の解答よりも単純な式になりました。しかし、式(9)を変形して式(12)のように単純な式を得るには、ベクトル方程式の計算パターンだけではわかりません。
 式(12)を見出すには、ベクトルODをどのベクトルであらわそうとするかの、答えをどういう視点でとらえようとするかの、解答者の意思に依存します。
 以下の問題2では、そのような「意思」を定めた後の解き方を示します。

【問2】
 三角形OABの外心(外接円の中心)Dの位置ベクトルを、ベクトルOAと、それに垂直なベクトルgとであらわせ。
なお、点Oは原点、頂点A,Bの座標は、点A(a,0)、点B(b,b)とする。

求める位置ベクトルODは、以下の式(13)で、ベクトルaとgとであらわせます。この式で係数kが未知数です。 
三角形の一辺のベクトルOBは、以下の式(14)で、ベクトルaとgとであらわせる。
三角形の一辺OBの垂直二等分線でDまでいたるベクトルqは、以下の式で計算できる。
三角形の一辺OBのベクトルbとそれに垂直なベクトルqの間には、以下の式(16)の関係がある。この式(16)に式(15)と(14)を代入して計算する。
式(17)で求めた未知数kを更に変形する。
式(18)で求めた未知数kを式(13)に代入して求める位置ベクトルdが得られた。
(解答おわり)


リンク:
高校数学の目次

0 件のコメント:

コメントを投稿